

©Everware-CBDI Inc. 2016 Page 1

Modernization with Service Architecture & Engineering and the Agile Service Factory

White Paper: Modernization with Service

Architecture & Engineering and the Agile

Service Factory
The urgent need to embrace digital systems strategies is commonly seen as an
existential challenge. The aims and objectives of modernizing projects or programs
are highly likely to prioritize creating inherently agile business and IT capabilities,
able to respond to unpredictable requirements.

Contents
Introduction ... 2

Modernization Context ... 2

Modernization Strategy .. 3

Transition Strategy & Architecture .. 5

Solution Architecture and Modernization Plan ... 6

Externalization of Rules ... 8

Governance & Compliance ... 8

Agile Modernization Process ... 10

About Everware-CBDI ... 12

©Everware-CBDI Inc. 2016 Page 2

Modernization with Service Architecture & Engineering and the Agile Service Factory

Introduction
Service Architecture & Engineering (SAETM) provides a coherent reference framework

(model, architecture, process and service factory) for enterprise scale software services.

Many enterprises adopting SAE are using it as the backplane for modernization of existing

systems. This paper provides introductory guidance on SAE in support of core enterprise

modernization projects.

Modernization Context
Why are the existing systems being modernized?

What are the goals of modernization?

Conventionally modernization has focused on “application” modernization. Frequently this

has focused on platform and technology issues caused by end of life or support issues

triggering compelling events that must be responded to. In many cases however, although

modernization is clearly required because of end of life skills, excessive complexity, cost etc.

there is no compelling case for action. In today’s world modernization usually has a very

different trigger - the urgent need to embrace digital systems strategies that enable response

to profound changes in business models and markets that often represent existential

challenges.

Approaches to modernization are therefore undergoing fundamental change. Application

modernization projects commonly adopted a “baseline” strategy; delivering new systems

with new technology and improved application architecture but providing exactly the same

functionality as the existing systems.

In responding to digital systems challenges frequently the solution requirements are

uncertain. The business model is undergoing change, perhaps driven by external forces, but

the only certainty is that the solutions will need to be able to respond to as yet unforeseen

needs. The aims and objectives of modernization projects or programs are highly likely to

prioritize creating inherently agile business and IT capabilities, enabling rapid response to

unpredictable requirements.

Consequently, today’s modernization projects will usually have radically different aims and

objectives to application modernization. These might include:

o Dramatic reduction in change cycle time

o Dramatic reduction in cost of change

o Significant reduction in operational cost

o Ability to adopt new technologies without major functional reengineering

o Transparency of (regulatory or legislative) compliance

o Increased quality of delivered products and services

o Organizational neutrality or ease of cross ecosystem operations

o Minimal organizational impact of modernization

©Everware-CBDI Inc. 2016 Page 3

Modernization with Service Architecture & Engineering and the Agile Service Factory

o Ability to respond to continuous organizational change (M&A, divestiture in part or

whole, etc.)

o Process flexibility, able to support multiple concurrent process models, batch,

realtime, event driven etc.

o Ease of introducing new (technology and business) channels

o Ease of introducing new products and services

o Enable certain business changes to be effected by non IT resources

Given the broad nature of the above list it might be appropriate to cease referring to

“application modernization”. A more suitable term might be enterprise modernization,

encapsulating business and IT concerns.

Modernization Strategy
What does modernization mean for the enterprise specific situation?

The SAE framework including the Agile Service Factory is an approach that directly and

indirectly supports many of the above modernization aims and objectives. Core principles

that are integral to SAE include

o formal reference architecture

o separation of concerns

o rigorous specification of business services and rules independent of implementation

o everything delivered as a service

o design by contract

o automation of infrastructure and common code through service factory concepts

o late (generation time) bound technology

o design by exception

o scalable Agile delivery process

o continuous modernization process

These are foundational principles that establish and crucially maintain a high level of

modularity, consistency, flexibility, productivity and quality that are fundamental to the

inherently agile business. Typically, users of SAE will take this baseline framework and

customize and extend to refine particular areas of need in a process that involves all

stakeholders, business and IT. The “business” goals for modernization should be articulated

and mapped to the modernization strategy, and principles further developed specific for the

enterprise needs. Table 1 provides an example.

©Everware-CBDI Inc. 2016 Page 4

Modernization with Service Architecture & Engineering and the Agile Service Factory

Business Modernization Goals

Elements of Modernization Strategy

Everything is a
Service

Separation of
data and

application

Implementation
Independent Service
Specification (SAE)

Implementation
Independent Rules
Specification (DM)

Event Driven
Processes

(EDA)

Core
patterns

delivered by
Service
Factory

Design by
Exception;
Minimize

custom coding

Standards
based

interoperation

Implement regulatory changes at last
minute

 H H

Improve Product/Service cost curve
trend

 H

Minimal organizational impact H H H

Enable future change be addressable by
non-IT resources

 H H

Support new product introduction H H H H H H H H

Align Logical and Implemented Process H H H

Reduce cost of future change H H

Absolute confidence of current rules
executed

H H H H H

Introduce new business channel/partner H H H H H

Table 1: Example Mapping of Business Modernization Goals and
Modernization Strategy

©Everware-CBDI Inc. 2016 Page 5

Modernization with Service Architecture & Engineering and the Agile Service Factory

Transition Strategy & Architecture
The reason most large-scale modernization projects are never completed is because

transition has not been thoroughly planned.

Modernizing one or more core business systems supporting a major enterprise is always

viewed as significant risk. The transition strategy is frequently part of larger efforts that

includes data rationalization and clean-up; portfolio rationalization addressing long standing

issues and inefficiencies resulting from mergers and acquisitions over many years; process

improvement; customer service/product contract rationalization; new product introduction;

etc.

Frequently therefore, there will need to be consideration of multiple applications and their

dependencies, multiple data domains and a staged transition strategy that introduces

capabilities on a progressive basis that minimizes risk to business continuity.

Risk minimization considerations typically include two dimensions of componentization:

a) Componentization of capabilities; identification of modules that can establish integrity

units that minimize the level of integration necessary between old and new systems.

b) Separation and phasing by data domains; for example, introducing change for certain

types of product, service, type of customer or geography.

Figure 1: Example Transition Architecture

Figure 1 illustrates an example of a transition architecture using the splitter aggregator

pattern which may be applicable to both types of componentization strategy, in which

incoming transactions of various types and behaviors are split and diverted to old or new

systems or components by some type of domain characteristic as discussed above, and

then aggregated in the outbound channels to provide business continuity and transparency

for system users. This is an example illustrating how an effective transition architecture is

often necessary to allow progressive change and minimum risk in highly complex portfolios,

leveraging the To-Be service architecture.

Establishing the transition strategy and architecture is therefore a critical first step that will

strongly influence program and project planning.

©Everware-CBDI Inc. 2016 Page 6

Modernization with Service Architecture & Engineering and the Agile Service Factory

Solution Architecture and Modernization Plan
A defined solution architecture is required to translate overall program goals into

implementable solutions that work smoothly and consistently together, and in the process

facilitate traceability and governance of the business goals as well as increasing program

productivity, quality and effectiveness.

Solution architecture is a key level of detail that articulates how the To-Be solutions will

collaborate at portfolio level and provides guidance for detailed design. The As-Is

architecture, see Table 2 below, establishes a baseline of the current capabilities and

provides key inputs into the To-Be architecture. These inputs guide capability boundaries,

metrics and service requirements that are common to old and new capabilities, aspects that

will be reused such as relevant non-functional requirements, common components, key

patterns, utilities etc. Core functionality discovery provides guidance on harvesting

opportunities.

Perspective View Content

As-Is Core

Functionality

Discovery

Abstract As-Is architecture into logical view

As-Is Integration

Discovery

Validate existing inventory of integration points

As-Is Implementation

View

Identify design & implementation standards / patterns

used; Identify design solutions implemented for: Security

(authentication & authorization); Exception handling;

Auditing / Logging; Code/Reference/Look up tables;

Identifiers; Concurrency control; Integration; Batch; UI;

Reporting; Persistence; Session state; Re-use; Other

As-Is Quality Reference to any existing QA standards or test assets

Reference to any compliance requirements, Reference

to types of legislative compliance requirements

As-Is Non Functional Service levels

Sizing and performance

Schedule constraints

As-Is Metrics Counts and complexities including mapping of perceived

patterns to pattern instances

Metrics for planning purposes

Table 2: As-Is Solution Architecture Content

©Everware-CBDI Inc. 2016 Page 7

Modernization with Service Architecture & Engineering and the Agile Service Factory

The To-Be architecture, see Table 3 below, defines the modernized solution architecture

views for both the transition and business operational capabilities with mapping of how the

business goals will be met in the modernized solutions.

Perspective View Content

To-Be Business Business motivation for modernization

Business agility requirements

Business delta between AS-IS and TO-BE - Gap

Analysis, Business process improvements. High level

Use Case and Data models

To-Be Transition Initial transition strategy

To-Be Enterprise Architecture vision and principles summary.

Identify TO-BE architecture patterns and high level

mapping from AS-IS architecture

To-Be Specification Service Specification Architecture

To-Be Implementation Identify exceptional TO-BE design standards, design

patterns, design solutions that will not be part of the

factory

Identify capabilities (may be utility, underlying and core

services) to service common functional requirements in

the solution/portfolio *

To-Be Technology Solution Platform requirements

To-Be Deployment Deployment requirements

To-Be Non Functional Service levels

Sizing and performance

Schedule constraints

To-Be Transition Detailed transition strategy and plan

To-Be Transition Outline transition solution, service and data

architecture and design considerations including audit

and parallel execution comparison capabilities

To-Be Transition Outline data migration plan

Table 3: To-Be Solution Architecture Content

©Everware-CBDI Inc. 2016 Page 8

Modernization with Service Architecture & Engineering and the Agile Service Factory

Note the Solution Architecture is developed using an Agile architecture approach that

delivers just enough clarity to coordinate the portfolio for consistency and facilitate planning

of delivery projects that will detail the solution architecture for specific program increments.

This topic is further addressed in the Agile Modernization Process section below.

Externalization of Rules
As a matter of principle all business logic that is not immutable is specified independently of

implementation and technology concerns. Everware-CBDI recommends the Decision Model

Notation (DMN) standard that guides a consistent decision/rule architecture and fully

normalized rule specifications. The DMN based rules architecture establishes a linkage to

business and service architecture to ensure the rules specification activity can be carried out

to meet product backlog priorities, while ensuring rule integrity across the program and

portfolio. Similarly, care must be taken in harvesting rules from existing systems to ensure

that existing design constraints are not repeated in the To-Be solutions and the rules

architecture in combination with the DMN techniques ensure integrity and reusability of the

rules.

Rules are called by services to render them loosely coupled.

Rule changes happen at the specification level. Allows variant rule delivery engines.

Governance & Compliance
SAE governance is about ensuring realization of the business goals of inherent agility and

ongoing integrity in delivered solutions. Agile governance is achieved through automation,

visibility and traceability of the common capabilities while encouraging innovation and

delegated responsibility.

Figure 2: Modernization Governance

©Everware-CBDI Inc. 2016 Page 9

Modernization with Service Architecture & Engineering and the Agile Service Factory

The SAE framework provides guidance on governance relating to the achievement of

business agility and integrity goals. This might be referred to as a subset of the overall

governance task addressing the realization of architecture in support of business goals.

Figure 2 illustrates how architecture principles, discussed above in Modernization Strategy,

are realized, firstly as detailed delivery principles that define and document specific

technologies, standards and policies that are then delivered as exemplars to be codified in

the Service Factory to enable pattern based generation. In this way a significant proportion

of governance over non-functional and common functional code is embedded in the factory,

and once the codification has been verified once, no further review is necessary. There will

always be exceptions and for these conventional Agile reviews and code inspections will be

undertaken.

The factory based governance practice both reduces governance effort and increases

productivity, while increasing compliance, traceability and visibility as follows:

o Business goals (for future agility) can be mapped to the reference and solution

architecture to show how the various business goals are addressed in the

modernized solutions.

o The reference architecture, plus policies and standards are embedded in the Agile

Service Factory, ensuring that a high proportion of code is compliant.

o Exception designs that do not use the factory (for whatever reason) will be highly

visible and tracked to ensure that full governance is carried out as appropriate.

o Specific legislative and regulatory compliance requirements can be identified in

service and rule specifications that provide visibility and traceability of compliance

requirements in the operational solutions.

o Test automation is driven by the service and rule specifications that ensures

comprehensive test coverage.

o Comparison services generated from service specifications and existing systems

interface specifications provide empirical evidence of outcomes.

©Everware-CBDI Inc. 2016 Page 10

Modernization with Service Architecture & Engineering and the Agile Service Factory

Agile Modernization Process
The SAE and factory process can execute using a more purist Agile development method,

enabling effective inter team dependency management with high levels of delegated

responsibility with less risk of compromised reference architecture or unacceptable levels of

technical debt.

Figure 3: Agile Modernization Process

In principle the SAE and Factory modernization process is a conventional Agile process, with

some important variations to address modernization specifics. As shown in Figure 3, it is

likely SAE modernization will be a scaled Agile program/project given the size and

complexity of enterprise solutions and services, with minimum necessary planning being

undertaken for the portfolio and program, and then detailed delivery activities organized as

Program Increments (PI) that deliver a significant business capability in its entirety.

Unlike well-known scaled agile processes, the SAE and factory based approach is less

consumed with largescale and frequent ceremonies to coordinate and manage inter-team

dependencies because the SAE framework provides consistent usage of reusable artifacts

such as services and operations. In addition all of these are under management as

specifications and factory managed code. There is therefore a high level of visibility and

consistency of approach that makes coordination much more straightforward. In

consequence the SAE and factory process can execute a more purist Agile development

method, enabling effective inter team dependency management with high levels of

delegated responsibility and less risk of compromised reference architecture or

unacceptable levels of technical debt.

As discussed earlier, Business Goals for the Program and Portfolio must be clearly

articulated to ensure the modernization strategy is designed accordingly; similarly, Transition

Architecture and Strategy must be undertaken at the Program and Portfolio level in order to

identify and outline units of business integrity that can be delivered in PIs. As Figure 3

indicates it is highly likely the strategy and plan will evolve in the light of the PI detailing.

©Everware-CBDI Inc. 2016 Page 11

Modernization with Service Architecture & Engineering and the Agile Service Factory

For each PI, Agile teams use largely purist Agile methods, avoiding big-upfront design as

follows:

o All teams are involved in Program and Portfolio planning efforts as appropriate.

o The Business Improvement & Implementation team provide subject matter experts

and coordinate delivery and realization of the modernized business. Specific

modernization processes will include harvesting and validating business knowledge,

carrying out comparisons between old and new solutions, and retirement of existing

systems.

o The Product Management team acts as the voice of the customer and coordinates

the realization of objectives and goals through the product backlog. A key

responsibility is to coordinate the product backlog together with the modernization

and transition plan in conjunction with the Architecture and PMO teams.

Modernization specific processes include collaboration on the transition strategy and

specification of future capabilities that in addition to enabling the inherently agile

business also provide units of integrity that can be transitioned into the business with

minimum risk and impact.

o The Architects are organized as a virtual team distributed into Development teams,

operating collectively as “architecture owners” with the responsibility to guide the

development of the reference architecture and the transition architecture. In addition,

the architects develop the As-Is architecture and are responsible for guiding

harvesting and reuse efforts. A key collaboration of the Architecture team is with the

Product and PMO teams to develop the product backlog in context with

modernization and transition dependencies.

o The Development teams are cross functional involving QA, architecture, devops, and

data. In addition, harvesting specialists will be required. Much harvesting will need to

have been undertaken separately and preparatory to the development activity,

prioritized and sequenced by PI demands, but Development Teams need access to

harvesting skills in order to advise and supplement. Also data migration is a major

effort with the Data Team working very closely with the Development Teams.

o The Governance team is a virtual team comprising architecture, PMO and product

roles. As discussed above, architecture governance for common patterns and

infrastructure is embedded in the factory. Only exceptions are subject to review and

the exceptions governance process is integrated into the Agile development life

cycle. A key aspect of governance is the audit of the delivered functionality in

providing integrity and continuity with the existing rules, solutions and data. In most

enterprise situations is a major preoccupation, and may be undertaken by automated

comparison of the old and new solutions, rules and data. Commonly the delivery

governance is undertaken by a separate team, and potentially by an independent

third party.

o Although Program Management might be seen as mutually exclusive with Agile

development, in largescale enterprise modernization situations there is a clear

requirement for PMO specialists to manage planning, dependency coordination, risk

©Everware-CBDI Inc. 2016 Page 12

Modernization with Service Architecture & Engineering and the Agile Service Factory

and cost governance and metrics. In the modernization context, the PMO processes

also include all aspects of coordination with current portfolio team from knowledge

acquisition to cutover and existing systems retirement.

About Everware-CBDI
Everware-CBDI is a technology consulting company with world leading expertise in service

architecture and engineering, software factories and enterprise modernization. The company

has led best practice development in service architecture and factory based development

providing clients in all industry sectors and government with facilitation, skills transfer,

implemented solutions, enhanced capabilities, automated tooling as well as documented,

repeatable processes. www.everware-cbdi.com

http://www.everware-cbdi.com/

